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Abstract
We study the role played by space symmetries in the context of the Berry phase.
It is found that the parameter space may be expanded to include non-compact
spaces, that minimal surfaces may be associated with the Berry magnetic field
and that, in S3, the Hopf invariant may be used to classify these surfaces and
fields up to a gauge transformation. A number of examples are discussed and
some evidence is offered for the existence of Berry phases that are not of the
monopole type.

PACS numbers: 03.65.Bz, 03.50.Kk, 02.40.Ky

1. Introduction

Already two decades ago, Berry announced the discovery of a topological phase generated by
quantum mechanical systems dependent on slowly varying external parameters as they evolved
along cyclic paths about a degeneracy of the quantum levels [1]. During the intervening years,
a substantial amount of rethinking of old known ideas (e.g. the Pancharatnam phase, the Born–
Oppenheimer approximation, the Aharonov–Bohm effect) as well as related investigations of
recent theories (e.g. anomalies, fractional statistics) has given rise to a veritable body of
knowledge on the role played by geometry and topology in the understanding of physical
phenomena. Almost immediately it was also realized that the Berry phase appears under
other guises in classical systems as well, thus extending the context in which it is relevant. In
the meantime, experimentalists have kept pace with theoretical developments, verifying many
predictions along the way [2, 3].

Two very striking features of the Berry phase are apparent in almost every work on
the subject. First is the fact that the relevant physical (parameter) space is compact and
multiply connected due to the existence of degeneracies. Second is the natural description of
the dynamical process in terms of parallel transport. Both are well-known and well-studied
mathematical concepts which have forced physicists to deepen their mathematics background.
In this work, we would like to show that symmetries play an important role and that the insight
gained from them provides complementary input in understanding the dynamics of the Berry
phase.
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To clarify the context of our discussion, we point out first that a concrete way in which the
Berry phase arises is through the observation of a quantum system, one of whose dynamical
variables is coupled to another system which, in turn, undergoes cyclic motion at a much
slower rate. The interplay between the ‘fast’ and ‘slow’ dynamics leads to the Berry phase
if certain conditions are satisfied. This physical picture is very satisfying and lends itself to
direct dynamical considerations through ordinary perturbation theory or path-integral analysis.
Indeed we will appeal to this paradigm in our discussion below. But this picture may also be
compared with the local circulation (vorticity) of fluid elements as they are carried along by
a global fluid velocity field. A symmetry which arises here finds its origin in the dragging of
the circulation along with the fluid. The analogy is apt, for the circulation, like the magnetic
field to which the Berry phase is ascribed, is divergence-free as well. In a related vein, in the
physics of perfectly conducting plasmas, this scenario also emerges as the magnetic field is
‘frozen’ and carried along by the plasma. Such magnetic fields are termed ‘force-free’ since,
as a consequence of the infinite conductivity of the fluid, the electric field vanishes in the frame
of the fluid and the fluid moves with zero Lorentz force bearing upon it [4, 5]. In as much as
the Berry phase is seen as a phenomenon of geometric origin, the absence of force in these
fluids hints at a similar ‘geometric’ state of affairs.

Let us quickly derive the symmetry condition for the above-mentioned systems from their
equations of motion. Consider an inviscid incompressible fluid described by a velocity field
v = vi(∂/∂xi), with uniform density (set at unity). Euler’s equation may be written as

(∂/∂t + v · ∇)v = ∇(p + �), (1.1)

where � is a conservative potential and p is the pressure. On introducing the velocity 1-form
u = ui dxi , we may rewrite the above in differential-forms notation as

LXu = −d
(
p + � + 1

2v2
)
, (1.2)

where LX is the Lie derivative with respect to the vector field X = ∂/∂t + v and d is the
exterior derivative. For a perfectly conducting incompressible fluid the electric field vanishes
in the frame of the fluid, i.e. E′ = E + v×B = 0 and Maxwell’s equation dB/dt = −∇ ×B
yields, in forms notation, dB/dt = −LXB, where B = dA is the magnetic 2-form, and A

the gauge 1-form. For steady-state fields this gives us LXA = gradient. From this and
equation (1.2), we conclude that the most basic fact about fluids is that the Lie derivative of a
suitable 1-form is exact:

LXA = df, (1.3)

X being a divergence-free field and A the relevant 1-form describing the field with f a smooth
0-form. We will see in the next section that, without appealing to dynamical considerations,
the Berry phase may be described by a similar equation, and in section 3, that equation (1.3)
can serve as the starting point for generalizing the above considerations.

For completeness we review very briefly some background material on the geometry of
submanifolds which will be useful in our discussion [6]. For simplicity, take a smooth surface
M in R3. The tangent plane to M at a point P is denoted by TP M and, again at this point, the
normal to TP M is denoted by N(P ). We pass a plane �, called the normal section, normal to
TP M and hence containing N(P ). Let a curve γ on M pass through P with unit tangent vector
v at that point. The curvature vector k(v) of γ in the direction v is the acceleration vector
under motion along γ with unit speed. It follows that k(v) is collinear with the normal. Since
k(v) is a function of the circle formed by all the directions v, it has minimum and maximum
lengths k1 and k2 for two directions of v. These directions turn out to be orthogonal to each
other. We call the average H = 1

2 (k1 + k2) the mean curvature and H · N(P ) is the mean
curvature vector of M at P.
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If α is a curve in M, the velocity is α′ and the acceleration Dα′α′ where DV is the natural
(Levi-Civita) covariant derivative with respect to the vector field V. Then according to our
discussion, the length of the curvature vector is 〈Dα′α′, N(α)〉, where 〈·, ·〉 is the scalar product
and α′ is understood to have unit length. It is not difficult to see that the acceleration α′′ in R3

of a particle moving on M is the sum of its acceleration α̈ in M and 〈Dα′α′, N〉.
The importance of the mean curvature springs from the following geometrical fact: just

as the curvature gives the rate of change of length of an evolving curve, the mean curvature
measures the rate of change of area of an evolving surface. In fact, the variation of surface
area S with respect to a vector field V is given by −2

∫
S
V · HN dσ . Thus, for example, a soap

film would tend to move in the direction of positive mean curvature in order to decrease area.
When the mean curvature vanishes, we say we have a minimal surface. If one imagines a
surface made up of rubber bands stretched out in all directions, then on a minimal surface the
forces due to the rubber bands balance out and the surface need not move to reduce tension.
Nevertheless, most minimal surfaces are not stable since this requires the second variation of
area to vanish as well. In this work, we will show that a direct analogy between minimal
surfaces (e.g. soap films in gravity-free space since the mean curvature is proportional to the
pressure difference across the bubble surface) and the Berry phase can be established.

The paper is structured as follows: we give a brief review of the Berry phase in section 2
and develop the discussion on the symmetries associated with it. We discuss the general
properties of the gauge fields associated with the Berry phase in section 3, deducing a number of
them with the aid of the symmetry conditions. In section 4 the equation describing topological
Berry fields in R3 is obtained. A similar effort is made for fields in S3 in section 5, where we
observe that, possibly, an infinite variety of Berry phases might be available in S3. In section 6,
we describe an example of the Berry phase which corresponds to the flat Clifford torus. We
show in section 7 that gauge fields having the same Hopf invariant are gauge equivalent. The
issue of stability is briefly discussed in section 8. Finally, concluding remarks are given in
section 9.

2. Geometric setting of the Berry phase

In this section, we explain the origin of the symmetries exhibited by the Berry phase. In the
course of our exposition we also give a brief review of the topological phase in a geometric
setting.

Let us start with a Hermitian Hamiltonian H(λ) which depends on time through a set of
parameters λ describing a Riemannian parameter manifold M. Let us denote the collection of
well-behaved fermion (field) states by �. These fields can also be seen as a mapping from M
to a state space N which will be assumed to be arcwise connected [7]. If we identify � with a
point in N, then the evolution of a fermion state may be represented by a continuous path in this
space. In the adiabatic limit, we say that an initial eigenstate |�(0)〉 = |n(λ(0))〉 corresponding
to the nth level of the Hamiltonian continues to remain in this level as λ varies continuously
and adiabatically. After a closed loop has been traversed in a time t in M, the fermion state
evolves, not to |n(λ(t))〉, as one might naively expect, but to |�(t)〉 = |n(λ(t))〉 eiγn , where γn

is the topological phase [1].
This picture may be translated into geometric language as follows: elements of N are

related to each other by a gauge transformation. We say they are gauge equivalent and denote
this equivalence by ∼. The set of gauge inequivalent points in N forms a new reduced
space R = N/∼. It is not difficult to see that a closed cycle in R need not correspond to a
closed loop in N. In quantum mechanics, R is the set of rays in the projective representation
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[8, 9]. To understand how the Berry phase arises, we apply the adiabatic approximation to the
Schrödinger equation

i
∂

∂t
�(t) = H(λ(t))�(t), (2.1)

confining ourselves to the nth level defined by

H(λ)|n(λ)〉 = En(λ)|n(λ)〉. (2.2)

On introducing the ansatz

|�(t)〉 = exp

{
−i

∫ t

0
dt ′En(λ(t ′))

}
eiγn |n(λ)〉, (2.3)

we find, for a closed loop C in M,

γn = i
∮

C

A, A = 〈�|d�〉, (2.4)

where A is the gauge field [1]. It can be shown that γ depends only on the path and not on the
parametrization employed [10, 11].

The interpretation of these results becomes transparent if we redefine the Hamiltonian by
subtracting the corresponding eigenvalue En(λ). Then using tildes to distinguish quantities
corresponding to this shift, we have

Im〈�̃|d�̃〉 = 0, (2.5)

so that A = 〈�̃|d�̃〉 is the anti-Hermitian connection of the nth-level Hilbert subbundle which
vanishes along the path actually followed during the adiabatic motion of the system. Vectors
satisfying equation (2.5) are said to be horizontal and the connection A is a rule for defining a
horizontal subspace anywhere in N. Analogous to the remarks above, a closed curve in R (the
base space) need not correspond to a closed path in N. From a mathematical standpoint this
path is the lift of the closed loop, and tangent vectors along this path satisfy equation (2.5).
We associate the integral

∮
A with the lifted path by closing the latter with a vertical segment

connecting the endpoints. Although equation (2.5) is satisfied along the lift, it is not true along
the vertical segment. Hence γ = i

∮
A is nonzero. This then is the origin of the topological

phase.
In fact γ is a gauge-invariant quantity. Related curves in N are linked by a gauge

transformation: |�a〉 = |�b〉Uba , where U is unitary. The corresponding transformed
connection is given by AU = U †AU + U †dU and the magnetic field (curvature) F =
dA + A ∧ A turns out to transform covariantly, FU = U †FU . Thus

∮
A = ∫

∂−1C
F is

gauge invariant. After a complete cycle is traversed, states are multiplied by a unitary matrix
exp(−∮

A) which mixes states among themselves in a gauge invariant way. In the usual
formulation of the Berry phase, one considers the set N ′ of wavefunctions of unit norm and
discovers that N ′ is a principal fibre bundle over the projective space of rays. The Berry phase
arises from the anholonomy angle associated with parallel transport.

From the manner by which the topological phase is generated we gather that certain
symmetries arise naturally. To begin with, let us first observe that a discussion of symmetries
requires a rule for comparing fields at different points of M. The simplest one which requires no
additional structure on M is that of Lie dragging the field A at a point λ + 	λ to another point
λ along a smooth curve. One can then compare A(λ) with A(λ + 	λ) in an unambiguous way.
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The symmetries we are considering arise as follows: we associate the set of manifold-filling
non-intersecting curves along which fields are to be dragged with a vector field X. A given
field A is said to possess the symmetry generated by X if the field A(λ + 	λ), when dragged
to λ, coincides with A(λ).

To convert the above rule into a calculational procedure, we note that the vector field X
may also be viewed as the generator of a one-parameter family of diffeomorphisms of M to
itself, x → x ′ = x + ε · X. In fact, a set of symmetries is a group of motions of the manifold
M with which we associate transformations of the field. For a scalar field this transformation
is just a translation. Under the mapping then, A is transformed to A′ which we define by

A′(x) = A(x ′). (2.6)

From the transformation rule for vectors

A′
µ(x) = ∂x ′ν

∂xµ
A′

µ(x) = (
δν
µ + ε∂µXν

)
(Aν(x) + εXρ∂ρAν), (2.7)

we now define the Lie derivative of Aµ with respect to X by

LXAµ = lim
1

ε
(A′

µ(x) − Aµ(x))

= (∂µXρ)Aρ + Xρ∂ρAµ. (2.8)

Hence a vector field Aµ possesses the symmetry generated by Xµ if LXAµ vanishes. The
discussion for more general tensor fields follows a similar development. Each diffeomorphism
δ gives rise to a bundle map for every tensor bundle over M. To each local cross section T of
the tensor bundle there corresponds a cross section T (t) for each diffeomorphism δ(t), t being
the parameter characterizing the family of diffeomorphisms. The Lie derivative is defined by

LXT = lim
t→0

1

t
(T (t) − T ). (2.9)

If the Lie derivative vanishes, then we will say that T possesses the symmetry generated by X.
In the case of gauge fields, the requirement LXAµ = 0 is overly restrictive on account

of the fact that AU = U †AU + U †dU is gauge equivalent to A. It suffices to weaken our
definition above by replacing A′

µ(x) with AU
µ (x) for some particular U. If we set U = eiεφ we

obtain

AU
µ (x) = Au + ε(∂µφ + [φ,Aµ]), (2.10)

so the above symmetry condition becomes

LXAµ = Dµφ, (2.11)

where Dµ is the standard covariant derivative. In as much as we will only concern ourselves
with the Abelian case, we replace this by

LXA = dφ. (2.12)

This then is the general mechanism by which the symmetries of section 1 arise. In the next
section, we study the consequences of this equation in connection with the Berry phase. Unlike
equation (1.3), condition (2.12) was obtained without recourse to dynamical equations. The
above concept of symmetry is discussed within a fibre-bundle context by Harnad, Shnider and
Vinet [12].



190 J C Martinez

As an example of the discussion above, we briefly discuss Berry’s now classic model [1].
A spin- 1

2 particle in a magnetic field is governed by the Hamiltonian H(R) = R · σ(R =
constant). It has eigenvalues ±R. The normalized +R eigenstate may be written as

u+ = [2R(R − R3)]
−1/2

(
R1 − iR2

R − R3

)
=

(
e−iφ cos θ

2
sin θ

2

)
, (2.13)

which satisfies (H(R) − R)u+ = 0. From equation (2.13) we calculate the gauge potential

A = 〈u+|d|u+〉 = i

2

R2 dR1 − R1 dR2

R(R − R3)
, (2.14)

with div A = 0, which displays the well-known Dirac string singularity. The corresponding
‘magnetic field’ is

B = dA = i

2

R1 dR2 ∧ dR3 + R3 dR1 ∧ dR2 + R2 dR3 ∧ dR1

R3
. (2.15)

This is the standard magnetic monopole field. It is clear that the surface of constant magnetic
field is a patch of a sphere S2. The geometric phase is

γ =
∮

C

dA = 1

2
�, (2.16)

where � is the solid angle subtended by the closed arc C as seen from the point of degeneracy
R = 0. We can verify directly that equation (2.12) is satisfied by X = R1∂/∂R2 − R2∂/∂R1,
which represents motions along the curve C. The calculation is simplified by observing that A

is a connection of the Hopf bundle of S3 over S2. In a given gauge, A = 1
2 (1 + cos φ) dφ and

X = ∂/∂φ. Because of the degeneracy at the origin, the parameter manifold has the topology
of a compact 2-sphere.

3. General properties

Continuing the development of section 2, we explain the general properties of the gauge
field. Initially, we will take a more general point of view by considering a divergence-free
(n − 1)-form α living in a (2n − 1)-dimensional Riemannian manifold M of fixed orientation.
Wherever necessary a metric will be assumed to have been introduced. The case of three
dimensions corresponds to n = 2. In the standard Berry example one has the Hopf fibration
S3 → CP1 and the pullback of the Fubini–Study metric may be used. For higher dimensional
spaces we refer to Nowakowski and Trautmann [13]. From equation (1.3) and the end of
section 2, we therefore start with the equations for an (n − 1)-form α

d ∗α = 0 (3.1a)

LXα = dh, (3.1b)

where h is an (n − 2)-form, ∗α is the Hodge dual for α and X is a divergence-free vector field.
We employ the conventions of Eguchi, Gilkey and Hanson [14]. We tacitly assume that the
quantities involved satisfy suitable continuity and differentiability requirements. From here
on, fields obeying equation (3.1) will be called gauge fields. Let us now study the properties
of these fields. Our ultimate goal, to be reached in sections 6 and 7, is to show that these gauge
fields can be uniquely classified in terms of their Hopf invariants.

First of all, the vector fields Xi form a Lie algebra with respect to the Lie brackets [, ]
because

L[Xi,Xj ]α = (
LXi

LXj
− LXj

LXi

)
α = d

(
LXi

− LXj

)
h, (3.2)
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and [Xi,Xj ] is divergence-free if Xi and Xj are. The vectors Xi constitute an involutive
vector space in this sense. Thus several symmetries may be simultaneously considered.

We introduce next the energy EB and the Hopf invariant SAB

EB =
∫

M

∗B ∧ B ≡ (B,B)

SAB =
∫

M

α dα

(3.3)

where B ≡ dα is an n-form. SAB is a topological invariant which measures the helicity
of fields (see below). Under transformations generated by X, SAB is an invariant, for by
equation (3.1)

LXSAB = 0. (3.4)

Furthermore, if X is a Killing vector field, then it is known that L∗
X = ∗LX so we have

LXEB = 2
∫

∗B ∧ LXB = 0, (3.5)

by equation (3.1b), i.e., EB is invariant under flows arising from X (isometries). Since Killing
vector fields are divergence-free, we conclude that SAB and EB are invariant under isometries.

Equation (3.1b) translates to LXB = LX dα = 0. In as much as B is an n-form, it
describes an n-surface S defined here as the surface for which B is proportional to the surface
area n-form of S, i.e., S is homologically trivial. Most of the interesting submanifolds will be
embedded either in R3 or S3 and we will assume that this stipulation suffices for the cases
of interest. Such surfaces may be termed magnetic surfaces and have been discussed in the
literature [15].

We show below that this implies that S corresponds to a minimal surface. A result like
this is to be expected since, according to Samuel and Bhandari [16], the Berry phase is the
line integral of the connection A evaluated along a geodesic curve. It is natural then to search
for manifolds wherein such geodesic curves play a special role. Because of the paucity of
submanifolds whose geodesics are also geodesics of the manifold in which they are immersed
(i.e., totally geodesic submanifolds), the next logical candidate is a minimal surface. Let us
first show that X need not be normal to S. Let E1, E2, . . . , En be a local orthonormal frame in
S. From a well-known formula [17]

(LXB)(E1, E2, . . . , En) = XB(E1, E2, . . . , En) −
n∑

i=1

B(E1, . . . , [X,Ei], . . . , En). (3.6)

By virtue of our discussion above, the left-hand side of equation (3.6) vanishes. Since
B(E1, E2, . . . , En) is the volume form and X is volume preserving, the first term on the right-
hand side vanishes. It follows that the second term vanishes as well. On the other hand, we
may write for the second term on the right-hand side

−
∑

i

∑
j

B(E1, . . . , g([X,Ei], Ej )Ej , . . . , En)= −B(E1, . . . , En)
∑

i

g([X,Ei], Ei) = 0

(3.7)

(g(,) denotes the metric). If the magnetic field B(E1, E2, . . . , En) does not vanish, then X is
normal to S and it belongs to the normal subspace of S. However, it may happen that the field
vanishes and in this case X need not commute with Ei . We will examine this possibility in
section 5.



192 J C Martinez

Now the mean curvature along a normal N to S, denoted by k(N), is obtained by a natural
generalization of the discussion of section 1:

k(N) = 1

n

∑
i

(
DEi

Ei, N
) = −1

n

∑
i

(
DEi

N,Ei

)

= −1

n

∑
i

(
DNEi + [Ei,N], Ei

)

= −1

n

∑
i

1

2
DN(Ei, Ei) +

1

n

∑
i

g([N,Ei], Ei)

= 1

n

∑
i

g([N,Ei], Ei). (3.8)

In the second line above we had used the fact that DXY − DY X = [X, Y ] [6]. Since [N,Ei]
vanishes, k(N) = 0 and so S is a minimal surface.

Let us restrict ourselves for a moment to three-dimensional space. Then α is a 1-form
and we can always choose a gauge such that equation (3.1) becomes LXα′ = 0, where
α′ is the gauge transformed connection 1-form. Making use of the Cartan formula [17]
LX = i(X) d + di(X) for the Lie derivative and the fact that X is normal to S, we find that
i(X)α′ = constant. That is, the projection of the connection on a Killing field is constant. In
other words, in 3-space, the rate at which Berry’s phase changes is constant along a Killing
field. Although a similar statement can be given for general manifolds the interpretation in
terms of the Berry phase is not as transparent.

Physically LXB = 0 means the invariance of B under flows generated by X. As the
above calculation shows, the Berry magnetic field issues normally through a minimal surface.
The magnetic surfaces are analogues of the equipotential surfaces in electrodynamics or fluid
mechanics, where these are important in their own right.

Because of our interpretation of B as the volume form of S, the condition that S is a
minimal surface is equivalent, by equation (3.3), to the condition that energy is minimum.
This is analogous to surface energy in soap bubbles. We can go further by showing that energy
is a minimum when

dα = λ∗α, (3.9)

where λ is a constant. (If we accept equation (3.1a), then λ can only be a constant and in this
case it is clear that EB = λSAB .)

To obtain equation (3.9), consider the quantity EB − λSAB = ∫
α d{(−)n∗dα − λα}. On

varying with respect to α, the above result readily emerges. To verify that we have minimum
field energy, define I ≡ (α, α). SAB satisfies the Schwarz inequality S2

AB � I · EB with
equality holding precisely when equation (3.9) is true. Since SAB is a topological invariant
(see below), it follows that equation (3.9) is indeed the condition for minimum energy. (One
may add to the right-hand side of equation (3.9) an n-form ∗dβ but this contributes a total
divergence to the field energy and may be ignored.) In the minimal-energy case, one can show
directly from equation (3.9) that

	α = λ2α, (3.10)

where 	 = δ d + dδ is the Laplacian, and δ = (−)pn+n+1∗d∗ is the co-derivative acting on a
p-form in n-space.

To relate the present discussion to the Berry phase, let us once more look into the
considerations introduced in section 1. Suppose a vector field F is co-moving with a fluid.
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The flux of F through a surface element dσ is defined by f = F · dσ. We say that the field
is frozen into the fluid if

df

dt
= 0,

where d/dt is the convective derivative. We can rewrite this as
df

dt
= ∂

∂t
f + Luf = 0. (3.11)

In the case of a static incompressible flow, this is the analogue of equation (3.1). Hence our
defining equation (3.1) implies that the Berry field is a static field frozen into the moving
fluid, i.e., the Berry field is frozen into the coordinate frame travelling with the system as
it is adiabatically transported about a closed loop in a force-free manner. Let S denote the
corresponding magnetic surface, and let us assume further that during adiabatic transport,
the boundary of S remains fixed or empty. Then the change in its area as a result of this
transformation is −2

∫
S
V · HN dσ , where H is the mean curvature (which vanishes for any

minimal surface). It follows that the condition that the Berry magnetic field corresponds to
the volume form of the minimal surface S ensures that transport introduces no net changes in
the area, and therefore no additional expenditure of energy. Thus, during adiabatic transport,
energy is both conserved and kept at its minimum value. The helicity is conserved as well.

Finally, we give some remarks about the Hopf invariant. The Hopf invariant gives the
linking number of two disjoint manifolds and is a genuine topological invariant [18–22]. In
the minimal energy case, if we normalize α such that (α, α) = 1, then λ is an integer, namely
the linking number. The Hopf invariant classifies manifolds into equivalence classes. We can
further appreciate the relevance of SAB as follows. In R3 let C be a closed curve on a surface S
and let the vector field A be everywhere normal to S. Then the loop integral

∫
C

A dl vanishes.
By Stokes’ theorem this integral is also equal to

∫
S ′ ∇ × A · dσ , where C bounds the surface

S ′ ⊂ S. But this surface integral does not vanish in general unless A · ∇ ×A = 0 everywhere.
This translates, in simply connected 3-space, to the impossibility of constructing (even locally)
surfaces that are normal to A unless the condition A · ∇ × A = 0 holds. We will show in
section 7 that this is equivalent to the vanishing of the Hopf invariant. Thus, the non-vanishing
of the Hopf invariant signals a nontrivial geometric structure. In the minimal-energy case,
equation (3.9) shows that a nontrivial manifold structure is involved. Berry’s example at the
end of section 2 corresponds to the principal bundle π : S3 → S2 which has nontrivial topology
(see section 5 also).

4. Fields in Euclidean space

In this section, we show in a concrete instance how the symmetry requirement (3.1b) may be
exploited to obtain the equation for topological fields in Euclidean three-dimensional space.
It turns out that there is a unique magnetic surface corresponding to a helicoid which emerges,
and that there are no such surfaces of finite range in Euclidean space.

To construct an example, consider a spinning charged particle which is carried along a
helix C of pitch angle α = 45◦ and unit radius. The charge is transported in such a way that
its spin direction is always tangent to the helical path. Here we will not be concerned with the
spin beyond the fact that it fixes the direction of the particle along its path. We can now form
an orthonormal triad of vectors T ,U, T ×U , where T is the unit tangent vector and U is a unit
vector orthogonal to T. As the charge winds along C, the triad rotates about T. The angle of
rotation is given by

ϕ =
∫

C

U × T · ∂

∂xi

U dxi. (4.1)
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By analogy with equation (2.4) we may regard Ai = U × T · ∇iU as our gauge potential. For
the example at hand, we have T = (−y, x, 1)/

√
2, U = (x, y, 0), x2 + y2 = 1. Then A =

(y,−x, 1)/
√

2 and ϕ = 2π/
√

2, per turn. In the general case, ϕ = 2π sin α (α = pitch angle)
and the phase anholonomy is 2π(1 − sin α). To see the form of the gauge potential more
transparently, we perform a gauge transformation: A′ = A + ∇�, where � = −z/

√
2 and

obtain A′ = (cos z,−sin z, 0)/
√

2 which is helicoidal. One verifies that equation (2.11) holds
once again, this time for X = y∂/∂x − x∂/∂y + ∂/∂z. Both A and the magnetic field are
constant over this helicoid.

Our parameter manifold for this example has the topology of the straight line. This is
manifested by the fact that only Az contributes to ϕ. We can think of the particle trajectory as a
thin ribbon following the helix. As it moves, the particle keeps track of its rotation from its
initial position. In this sense, ϕ is a measure of the total twist of the ribbon. Unlike Berry’s
example the parameter manifold in the present example is non-compact.

Let us now see how we can deal directly with equation (3.1). Suppose we integrate both
sides of equation (3.1b) over any patch of the surface S described by B = dα. Then at each
point of S, B is a constant times the surface n-form of S. Clearly LX

∫
∂S

α = 0, where ∂S

is the boundary of the patch. Since ∂S is arbitrary, we must have
∫
∂S

α = 0. But in R3, α

is just f ds, where f is a function on ∂S constructed from vectors available on S and ds is
the element of arc length on ∂S. Now the only vectors available are the conormal n̂⊥ and an
arbitrary fixed vector b̂ in R3. Then we have∫

∂S

n̂⊥ · b̂ ds = 0. (4.2)

Evidently, the form of α is dependent on the particular geometry of S.
Suppose we assume that S is a ruled surface, i.e. a surface of the form x(t, v) =

α(t) + vw(t), generated by the family {α(t), w(t)}, where α(t) is a curve in R3 and w(t)

a non-vanishing vector assigned to α(t) and (t, v ∈ R). Then, by a theorem in geometry [23],
S depends on two parameters u and v such that

n̂⊥ = σ ′(u) + vδ′(u), (4.3)

where σ and δ are vectors satisfying δ − δ = 1 and σ ′ − δ′ = 0 and ′ denotes differentiation
with respect to u. If we choose b = (0, 0, 1) ≡ k̂ and slice S with planes at z = z1 and z = z2

parallel to the xy plane, equation (4.2) yields

k̂ · (σ ′ + vδ′)|z1 = k̂ · (σ ′ + vδ′)|z2 , (4.4)

which is obviously satisfied if σ ′ = constant and in the z-direction. Hence we may set
σ = (0, 0, u) and we find δ = (cos u, sin u, 0). In forms notation, we have

α = cos z dx − sin z dy, (4.5)

with d∗A = 0, which was the example considered above. One can now check that
equation (3.1b) holds for X = −x∂/∂y + y∂/∂x + ∂/∂z and α has linking number λ = 1
per turn about the z-axis. The surface is a helicoid, the earliest nontrivial minimal surface
discovered. In the text of force-free fields this had been treated before by Ferraro and Plumpton
[4]. Finally, let us show that the helicoid is the only gauge field in R3.

First, let us observe that in Euclidean space, topological fields do not span a compact
manifold. Suppose that S is closed and compact in R3. Then ∂S is a closed curve in S
dividing it into two parts. Since b̂ · n̂⊥ cannot vanish on ∂S (i.e., α is nondegenerate), clearly
equation (4.2) cannot be satisfied. In the case of a non-compact surface, ∂S may be made up
of two curves dividing S into three parts. In this instance equation (4.2) may be satisfied as
the example above shows.
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Now, we may think of the spin as a vector in the tangent space at every point of S. It
follows that the Berry phase is a rule by which the tangent space of S may be constructed
along a loop. By equation (3.1), we understand that S enjoys a symmetry property by which
transport in the direction of the vector field X leaves its volume unchanged. But in R3 we have
a natural vector field, namely the vector field defined by the spin. Because of the affine nature
of R3 it now follows that S must be a ruled surface. But a well-known result in geometry tells
us that the only ruled minimal surface in R3 is a helicoid (Catalan’s theorem [24]). Thus there
is only one topological field in R3 and this is the helicoidal field discussed above.

To investigate gauge fields of finite range it is natural to consider those embedded in a
sphere. The next two sections discuss this issue.

5. Topological fields on the sphere

In this section we obtain the equation obeyed by gauge fields (described by (n − 1)-forms)
living on the unit sphere S3 ⊂ R4. Evidently Berry’s example for a spin- 1

2 system falls into
this category. In fact, as shown by Segert [25], the requirement of rotational symmetry of the
field on S3 suffices to determine the field uniquely. This explains why the monopole form
of Berry’s example is so ubiquitous. However, we will argue that in S3 an infinite variety of
topological fields can exist and in section 6 we give an example that is not of the monopole
type.

First, we examine equation (3.1) in a general 3-manifold M3: A is a 1-form and h a
0-form. Suppose that the magnetic field is non-vanishing so X is normal to S. Since LX dA

vanishes we have diX dA = 0 or iX dA = dh′, where h′ is a new 0-form. The condition h′ =
constant describes level surfaces in M3 and simultaneously the magnetic surfaces S which
are transverse to X. Thus h′−1(constant) are the leaves of a co-dimension one foliation of M3

corresponding to magnetic 2-surfaces that are everywhere transverse to the vector field X. We
assume closed magnetic field lines so that S must be closed and compact. In virtue of the
above correspondence then, h′−1(c) are closed and compact leaves.

Next we look into the construction of tangent vectors on magnetic surfaces. At any point
of S we can set up a distinguished set of coordinates (x, y, z) and write X = f (∂/∂z) where
f is a 0-form. Since div X = 0, we have f = f (x, y). If S has non-vanishing Gaussian
curvature then the first derivatives of f do not vanish. We may thus form two vector fields
U = fx(∂/∂x) and V = fy(∂/∂y) everywhere tangent to S and commuting with each other,
[U,V ] = 0 (notation: fx = ∂f/∂x). Then the action of the group R2 on the closed 2-surface
S is a torus. This gives us a topological classification of the flow lines on magnetic 2-surfaces.
An exception to this is the case of compact and connected 3-manifolds. By Lima’s theorem,
which states that two commuting vectors in such manifolds must be linearly dependent at
some point [26], we conclude that there is only one such vector field in this case.

We also inquire about the possibility of the magnetic field vanishing everywhere. Consider
equation (3.7). If the magnetic field vanishes, then

∑
g([X,Ei], Ei) need not vanish. Thus

X is not normal to the magnetic surface. Now we know that a compact simply connected
3-manifold has rank 1, that is, two commuting vectors must necessarily be linearly dependent
somewhere (Lima’s theorem). A sufficient condition that a 3-manifold is simply connected
is that A dA vanishes. Thus a three-dimensional compact space in which A dA = 0 has zero
magnetic field everywhere. It is tempting to replace this last condition by that of zero linking
number; however, we will be able to show this only in section 8. An example of a system with
zero field but nonzero connection is given in section 6.

We now obtain an equation satisfied by gauge fields in S3. Let X be a Killing field and let
f = 1

2 〈X,X〉 be half of its length squared. Guided by the work of section 3 we compute the
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Laplacian of f , defined here alternatively as a contraction:

	f =
∑

i

〈
DEi

gradf,Ei

〉
. (5.1)

From the definition 〈gradf,X〉 = Xf , valid for any vector field X, we obtain grad f = −DXX.
Now we invoke the definition of the Riemannian curvature tensor R for a set of vectors V,W

and X [6]:

〈DV DXX,W 〉 = 〈D[V,X]X − RV XX + DX DV X,W 〉. (5.2)

Because X is a Killing vector, i.e. it satisfies 〈DV X,X〉+〈DXX, V 〉 = 0, the last two equations
yield

	f = −Ric(X,X) + tr(DX,DX), (5.3)

where Ric(X,X) = ∑
Ei

〈
RXEi

X,Ei

〉
is the Ricci tensor. Equation (5.3) holds for any

Killing vector X. On the sphere, however, X = xi∂j − xj∂i so that f has the simple form
1
2 (xi)2 + 1

2 (xj )2. Also DX is zero or normal to the sphere so tr(DX, DX) vanishes. Because
the sphere S3 has constant sectional curvature, we have

Ric(X,X) = 2〈X,X〉/r2, (5.4)

where r = 1 is the radius of S3. With f given above, the left-hand side of equation (5.3) may
be cast as 〈Dxi, Dxi〉 + 〈xi,	xi〉 and finally we obtain

	xi = −2xi, (5.5)

as the equation for the components occurring in the Killing vector X which generates isometry
transformations on the fields. Alternatively, xi describe the coordinates of the fields embedded
in S3 upon which X operates. (In Euclidean space we have r → ∞, so equation (5.5) is replaced
by 	xi = 0. One can verify that the helicoid of the previous section satisfies it.)

It is well known that equation (5.5) is the equation of a minimal n = 2 surface embedded
in S3 [27]. Thus, we have shown that the gauge fields obeying equation (3.1) and embedded
in S3 correspond to minimal surfaces.

To illustrate this, let us consider Berry’s example once more. It is really a Dirac monopole
in parameter space. The Dirac vector potential is just the connection of S3, the principal U(1)

bundle over S2 [28]. If we think of S3 as a subset of C2 = C ×C, the Killing field is generated
by the rotation of one of the complex factors and is tangent to two circles.

We employ real coordinates y1, y2, y3, y4 on C2 with (y1)2 + (y2)2 + (y3)2 + (y4)2 = 1
for S3. The corresponding Dirac (connection) 1-form is

A = 1

π
(y1 dy2 + y3 dy4). (5.6)

In S3, the volume form is proportional to

σ = y1 dy2 ∧ dy3 ∧ dy4 − y2 dy1 ∧ dy3 ∧ dy4 + y3 dy1 ∧ dy2 ∧ dy4 − y4 dy1 ∧ dy2 ∧ dy3,

so we find dA = ∗A, and of course d∗A = 0. Moreover,

	A = A (5.7)

and the Hopf invariant is∫
S3

A dA = 2

π2

∫
S3

y1 dy2 dy3 dy4

=
∫ π

0

∫ π

0

∫ 2π

0
sin4 α sin3 φ cos2 θ dθ dφ dα = 1, (5.8)
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where the spherical coordinates x1 = sin α sin φ cos θ, x2 = sin α sin φ sin θ, x3 = sin α cos φ,

x4 = cos α were introduced. Thus we have verified equations (3.3) and (3.10) together with
the linking number interpretation of λ.

To obtain the corresponding magnetic surfaces, we employ the Hopf map π : S3 → S2

[29]. Parametrizing S3 by z1 = cos 1
2θ ei�1 , z2 = sin 1

2θ ei�2 , we have

π(z1, z2) = (z∗
1z2 + z∗

2z1,−iz∗
1z2 + iz∗

2z1, |z1|2 − |z2|2)
= (sin θ cos φ, sin θ sin φ, cos θ), (5.9)

where φ = �2 − �1. If we set (x1, x2, x3, x4) = (sin θ cos φ, sin θ sin φ, cos θ, 0) as the
coordinates of the magnetic surface in S3, we find that

	xi = −2xi (i = 1, 2, 3, 4). (5.10)

This verifies equation (5.5) and, of course, the surface is a patch on S2.
In 1970, Lawson [30] showed that there are minimal embeddings into S3 of surfaces of

arbitrary genus. Since we have observed that the Berry phase may be associated with precisely
these embeddings, it will be interesting to obtain new examples of the Berry phase that do
not have the monopole structure noted above and which is so pervasive in the literature. The
system in the next section is one such example.

6. Clifford torus

We describe in this section an example of the Berry phase that has the structure of the Clifford
torus. This concerns the interaction between electrons and the nuclear displacements of an
octahedral complex ML6 (M is the metal ion and L the ligand). An octahedral Cu2+ complex
has a d9 configuration (single hole in a closed d shell). The five 3d orbitals are degenerate.
When in the environment of an octahedron of negative charges, the d electrons split into a
doublet and a triplet with the former lying higher. The hole goes into the doublet and, as a
consequence, into an Eg representation of the Oh symmetry group [31, 32].

For strong ion–vibration coupling, the potential energy of the electron doublet paired with
a doubly degenerate vibration has the form [31]

V = 1
2ω2

(
R2

θ + R2
ε

)
1 + V0(Rθσx + Rεσy), (6.1)

where Rθ and Rε are real normal vibration coordinates, 1 is the unit 2 × 2 matrix and σ are
the Pauli matrices. The full Schrödinger equation may be written symbolically as

[Tnucl(R) + Tel(r) + V (r, R)]� = E�, (6.2)

r, R being electronic and nuclear coordinates. One now assumes that � can be separated into
nuclear and electronic components

�(r,R) =
∑

n

�n(r)φn(r, R), (6.3)

where n is a label for electronic eigenstates for fixed nuclear background. From the start we
exclude the kinetic energy of the electron doublet so, for fixed R, we require that

V0R

(
0 e−iϕ

eiϕ 0

)
φn(r, R) = εn(R)φn(r, R), (6.4)

wherein the polar coordinates Rθ = R cos ϕ,Rε = R sin ϕ have been employed. Thus we
have the solutions φT

n± = (e−iϕ/2,±eiϕ/2) with eigenvalues ±V0R. The full nuclear kinetic
energy operator is Tnucl = − 1

2∇2
R (mass normalized to unity), so the Schrödinger equation,∑

n

(
Tnucl +

1

2
ω2R2 + εn

)
�n(R)φn(r, R) = E

∑
n

�n(R)φn(r, R), (6.5)
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may be simplified by integrating away the electron degrees of freedom. This is the way the
Born–Oppenheimer approximation is obtained [2]. The result is{

−1

2

∑
k

[δmk∇R − iAmk(R)][δkn∇R − iAkn(R)] + δmn

1

2
ω2R2 + δmnεn(R)

}
= E�n(R),

(6.6)

where the Berry gauge potential Amn = i〈φm|∇Rφn〉 was introduced and has the simple form

A = 1

R

(
1 0
0 1

)
φ̂. (6.7)

The nuclear system behaves like a charged particle in a magnetic field B = ∇ × A = 0.
Although the magnetic field vanishes, we know, by the Aharonov–Bohm effect, that a phase
will be picked up by the system and this is just the Berry phase. Ham [33] has argued that the
order of the lowest vibronic levels of a Jahn–Teller system for an orbital doublet is specified by
the requirement that the vibrational part of the wavefunction change sign under a 2π rotation
in the vibration coordinates. Since the total wavefunction must be single valued in the space
of vibration coordinates, this sign change, in turn, forces a compensating sign change in the
electronic part of the wavefunction. This is precisely the Berry phase given above. Its structure
is clearly not that of the monopole sort. Unlike the monopole case, its linking number is zero.
We can understand now why B vanishes. Let us now give some topological details about this
example.

The two-level system we are dealing with involves two-dimensional complex vectors.
Hence the adiabatic transport of an eigenstate of the Hamiltonian defines a map from a
submanifold of the nuclear R-space to the space of two-dimensional complex vectors of unit
modulus. This is just the 3-sphere S3. Since the magnetic field vanishes, curvature is zero
and we have a flat submanifold in S3, namely the Clifford torus T2 given by the isometric
immersion x: R2 → S3 ⊂ R4:

x(θ, ϕ) = (cos θ, sin θ, cos ϕ, sin ϕ)/
√

2 (6.8)

with metric given by ds2 = 1
2 (dθ2 +dϕ2) which is Euclidean and hence flat. The path followed

by the E doublet is along a meridian θ = constant. It is known that the Clifford torus is minimal
in S3 [34].

7. Uniqueness of the gauge fields

We show in this section that gauge fields in S3 that have the same Hopf invariant are
equivalent up to a gauge transformation. A Riemannian metric will be understood to have been
introduced. Thus, suppose that two gauge fields A and B exist such that∫

S3
A dA =

∫
S3

B dB = n. (7.1)

It is easy to verify from this and the fact that S3 is closed that∫
S3

(A + B) d(A − B) = 0. (7.2)

We now show that for arbitrary fields ω and � in S3 satisfying the condition∫
ω d� = 0, (7.3)

one of them must vanish or be exact.
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Any gauge field ω in a compact and closed manifold can be written as a sum of
its harmonic part ω0, its longitudinal part dα and its transverse part δβ. By virtue of
equation (3.1b), the first two vanish so we have simply ω = δβ, i.e., ω is transverse. Now
we expand ω in terms of a set of a normalized basis of transverse eigenforms ϕn of the
Laplacian 	 : 	φn = λ2

nϕn, δϕn = 0, (ϕn, ϕm) = δnm. The eigenvalues are non-vanishing.
Thus

ω =
∞∑

n=1

cnϕn, (7.4)

where cn are expansion coefficients. We can also define another normalized basis of transverse
eigenforms φn for � :

φn = − 1

λn

∗dϕn. (7.5)

This is possible because the Hodge dual provides a natural isomorphism between the space of
1-forms and the corresponding space of 2-forms in compact 3-space. Observe also that ∗d is
linear and invertible. We can verify that 	φn = λ2

nφn, (φn, φm) = δnm, δφn = 0. Hence we
may write a parallel expansion for � :

� =
∞∑

n=1

bnφn. (7.6)

We now evaluate equation (7.3):

0 =
∫

S3
ω d� =

∑
n,m

cnbm

∫
S3

ϕn dφm =
∑

n

cnbnλn, (7.7)

where we used the various properties of the eigenforms defined above. Since the eigenvalues
λn are non-vanishing and can be arranged in ascending order, this result holds if and only
if all the expansion coefficients cn or all the expansion coefficients bn vanish. Therefore
equation (7.2) holds if and only if

A = ±B. (7.8)

Because the Hopf invariant is gauge invariant we may relax this condition to

A = ±B + df, (7.9)

where f is a smooth 0-form. This shows that two gauge fields satisfying equation (7.1) are
essentially gauge equivalent.

Two final remarks are in order. First, in section 5 we saw that a three-dimensional space
(S3 for instance) in which A dA = 0 everywhere has zero magnetic field. Clearly, this field
has zero linking number. We showed in section 6 that the Clifford torus also has zero linking
number. We know now that these two fields (and any fields with zero linking number) are
gauge equivalent. It follows that gauge fields with zero linking number in S3 must necessarily
have vanishing magnetic field. Second, the argument above was cast for three-dimensional
space. It can be extended to any odd dimensional compact space. The only modification is in
definition (7.5), which should read instead

φn = (−)2p−1−p−1 1

λn

∗dϕn (7.10)

for p-eigenforms in (2p − 1)-dimensional compact manifold.



200 J C Martinez

8. Remark on stability

We observed in section 1 that most minimal surfaces are really unstable, that is, their second
variation is negative. We will assume that the gauge field undergoes transport by the vector X
while the surface area of the corresponding minimal surface undergoes normal variation. In
section 3, we noted that the energy density B ∧ ∗B is invariant under X, so we need to consider
only normal variations of the surface area

∫
dσ . It is known that δ

∫
dσ = −2

∫
HV dσ , where

V is the normal variation of the surface x(u, v) → x(u, v) + tV (u, v)n̂, t ∈ (−ε, ε). Because
H vanishes for minimal surfaces, we see that the first variation of the surface area vanishes
and only the second variation of the area is required (the energy density remaining invariant):

δ2EB = −2(B ∧ ∗BδH). (8.1)

For compact and closed 2-manifolds in S3 it can be shown that [35]

δH = 1
2 (	V + 2KV ), (8.2)

where K = 1 is the constant sectional curvature of S3 and 	 the Laplacian on the surface.
Limiting ourselves to normal variations proportional to the coordinates of the surface, by
virtue of equation (5.5), we find δH = 0 and so for gauge fields in S3

δ2EB = 0. (8.3)

For the case of the helicoidal field in R3, which is non-compact, the corresponding normal
variation of H is [27]

δH = 1
2 (	V + 4H 2V − 2KV ), (8.4)

where H = 0 for a helicoid and K (< 0) is its Gaussian curvature. Since minimal surfaces in
R3 satisfy 	x = 0, we find then that

δ2EB < 0. (8.5)

Thus, we have established the instability of the helicoid, but gauge fields in S3 appear to require
further study. It would be necessary to consider more general surface and field variations.

The instability of a helicoidal soap film can be observed as follows: one forms a contour
of two identical spirals winding on opposite sides of their common axis and closed by two
horizontal wires at their ends. This is used as a frame for a soap bubble. If the spirals’ pitch
is great, the soap film stretched across this frame is a helicoid. As the pitch is decreased the
spirals contract and a point is reached when the soap film ceases to be a helicoid, becoming
instead a film resembling a strip wound helically about a cylinder [24]. The helicoidal film
has undergone a change of topological type.

Turning now to the Berry phase, in their experiment on a beam of spin-aligned neutrons
passing through a helical magnetic field of variable pitch, Bitter and Dubbers [36] reported
good agreement with theory for large pitch but less than ideal agreement for small pitch. They
attributed the latter to the failure of the adiabatic approximation. We surmise, however, that
this is really a manifestation of the instability of the helicoid and a change of topology.

9. Conclusions

We have shown that the symmetry-inspired equations (3.1) may be used to understand features
associated with the Berry phase. We also saw that the topology of the parameter manifold
may be expanded to include non-compact spaces, that the magnetic surface corresponding to
the Berry phase is a minimal surface and that the topological structure of these surfaces is
nontrivial and may be classified by the Hopf invariant. The now classic Berry phase is really a



Berry’s phase and space symmetries 201

circle-bundle of the 2-sphere forming S3; we have noted that there may exist an infinite variety
of minimal surfaces embedded in S3 and that, correspondingly, there should be an infinite
variety of Berry phases associated with these surfaces. We also showed that gauge fields may
be classified by their Hopf invariants. The issue of instability appears a fruitful area for future
study. This may also be pursued in parallel with a study of non-Abelian Berry phases [37].
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